If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-10q-90=0
a = 3; b = -10; c = -90;
Δ = b2-4ac
Δ = -102-4·3·(-90)
Δ = 1180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1180}=\sqrt{4*295}=\sqrt{4}*\sqrt{295}=2\sqrt{295}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{295}}{2*3}=\frac{10-2\sqrt{295}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{295}}{2*3}=\frac{10+2\sqrt{295}}{6} $
| 5v=6+3v | | -34a=48 | | -3w-7=10w+6 | | 375=150+60x | | 20=-2u+5(u-2) | | -10-10m=-5m | | 2x2x2x2=16 | | 3(x-9)=3x+8 | | 79-x=248 | | -11=7a+4a | | 6v-8=10v+8 | | 5(x-4)=-3x+4 | | 3p=5-2p | | 8(x+5)+5x=-12 | | 7=x(x^2+3x-41) | | 90=x+x*x*x*x | | 3c+2/4=26/4 | | 10n+8=-10=7n | | 3c+2/4=37 | | 2b-4.3=1.7 | | 9-9b=-10b | | .12a=-48 | | 13=6-4n+5n | | -10+6p=7p | | -19x+24=-20x-45 | | 9x-2x=49-7 | | x-1/2=4/2 | | 6/15=30/n | | -4k=-6-3k | | Y=1/2x^2+3x+7 | | -40-(2x+5=-61 | | -10=-5n-5n |